Galois Theory for Iterative Connections and Nonreduced Galois Groups
نویسنده
چکیده
This article presents a theory of modules with iterative connection. This theory is a generalisation of the theory of modules with connection in characteristic zero to modules over rings of arbitrary characteristic. We show that these modules with iterative connection (and also the modules with integrable iterative connection) form a Tannakian category, assuming some nice properties for the underlying ring, and we show how this generalises to modules over schemes. We also relate these notions to stratifications on modules, as introduced by A. Grothendieck (cf. Berthelot and Ogus, 1978) in order to extend integrable (ordinary) connections to finite characteristic. Over smooth rings, we obtain an equivalence of stratifications and integrable iterative connections. Furthermore, over a regular ring in positive characteristic, we show that the category of modules with integrable iterative connection is also equivalent to the category of flat bundles as defined by D. Gieseker in 1975. In the second part of this article, we set up a Picard-Vessiot theory for fields of solutions. For such a Picard-Vessiot extension, we obtain a Galois correspondence, which takes into account even nonreduced closed subgroup schemes of the Galois group scheme on one hand and inseparable intermediate extensions of the Picard-Vessiot extension on the other hand. Finally, we compare our Galois theory with the Galois theory for purely inseparable field extensions given by S. Chase in 1976.
منابع مشابه
A History of Selected Topics in Categorical Algebra I: From Galois Theory to Abstract Commutators and Internal Groupoids
This paper is a chronological survey, with no proofs, of a direction in categorical algebra, which is based on categorical Galois theory and involves generalized central extensions, commutators, and internal groupoids in Barr exact Mal’tsev and more general categories. Galois theory proposes a notion of central extension, and motivates the study of internal groupoids, which is then used as an a...
متن کاملInfinitesimal Group Schemes as Iterative Differential Galois Groups
This article is concerned with Galois theory for iterative differential fields (ID-fields) in positive characteristic. More precisely, we consider purely inseparable Picard-Vessiot extensions, because these are the ones having an infinitesimal group scheme as iterative differential Galois group. In this article we prove a necessary and sufficient condition to decide whether an infinitesimal gro...
متن کاملIterative differential Galois theory in positive characteristic: A model theoretic approach
This paper introduces a natural extension of Kolchin’s differential Galois theory to positive characteristic iterative differential fields, generalizing to the non-linear case the iterative Picard-Vessiot theory recently developed by Matzat and van der Put. We use the methods and framework provided by the model theory of iterative differential fields. We offer a definition of strongly normal ex...
متن کاملHIGHER DERrVATION GALOIS THEORY OF FIELDS
A Galois correspondence for finitely generated field extensions k/h is presented in the case characteristic h = p ^ 0. A field extension k/h is Galois if it is modular and h is separably algebraically closed in k. Galois groups are the direct limit of groups of higher derivations having rank a power of p. Galois groups are characterized in terms of abelian iterative generating sets in a manner ...
متن کاملDeformation of Outer Representations of Galois Group
To a hyperbolic smooth curve defined over a number-field one naturally associates an "anabelian" representation of the absolute Galois group of the base field landing in outer automorphism group of the algebraic fundamental group. In this paper, we introduce several deformation problems for Lie-algebra versions of the above representation and show that, this way we get a richer structure than t...
متن کامل